From now on, with $[x]$ we mean $[x]_{\mathbb{Z}}$. ie. $[x] \in \mathbb{R} / \mathbb{Z}$.
we proved thou $P^{-1}\left(\theta_{ \pm}([0])\right)$ is a subgroup of $\mathbb{R}$.
Goal: $\frac{\text { Theorem }}{\text { either }}$ Every subgroup of $\mathbb{R}$ is

1) $c \mathbb{Z}$ for some $c \geqslant 0$
2) dense.

More properties of Subgroups of $\mathbb{R}$
Lemma: If $\sigma \subset \mathbb{R}$ is a subgroup, and $c \in \epsilon$ then $c \mathbb{Z}<6$
Proof: Step 1: we will show Phat for all $n \geqslant 1, \quad c_{n} \in 6$.
Proof of St cp 1: By induction...
Base: Since $C \in 6,1 \in G$, and $c=C \cdot 1$

$$
c=c \cdot 1 \in 6
$$

Inductive: Assume that $c \cdot n \in 6$
Then $(c n+1)=c n+c \cdot 1=c n+c$ Since $c n \in S$ \& $c \in G$ by closure property of 6 (itis a group) we have

$$
c(n+1)=c n+c \in 6
$$

Step 2: For all $n \leqslant-1, c n \in 6$
Since 6 is a group if $n \in 6$ for $n \geqslant 1$
So it inverse. Therefore $-c n \in 6$ and $-C n=c(-n) \in G$.
Step 3: when $n=0, c n=c .0=0$. So $0=C \cdot 0 \in \sigma$, since the identity is an element of every sobyroup.

Exercise If $c \in \mathbb{R}, c \mathbb{Z}=(-c) \mathbb{Z}$
Lemma: If $c>0$ and $x \in \mathbb{R}$, there exists Some $y \in c \mathbb{Z}$ such flat $|x-y|<c$

we can choose $y=2 c$ or $y=c$
Fran the picture,

$$
|x-y|<c
$$

Proof of lemma: Let $n$ be the largest integer such that $n c \leqslant x$. Let $y=n c$.
since $n$ wasthe largest integer such that $n c \leq x$, it follows that

$$
x \leq(n+1) c .
$$

Therefore,

$$
|x-y|=|x-n c|=x-n c \leqslant(n+1) c-n c=c
$$



Exercise show that if $n \in \mathbb{Z}$ is the smallest integer such that $c_{n} \geqslant x$, then $|x-c n|<c$
Theorem If 6 is not dense, then there exists $C>0$, such shat $(0, c) \cap G=\phi$.
Proof we chill prove this by contrapositive! ie. we will assume that if for every interval $(0, c), \quad \sigma \cap(0, c) \neq \phi$, then conclude that 6 is dense.
Let $(a, b) \subset \mathbb{R}$ an arbitrary interval. we will show $(a, b) \cap 6 \neq \phi$.
let $x=\frac{a+b}{2}$ the midpoint of $(a, b)$
$\varepsilon=\frac{b-a}{2}$ the distance of the mid-pt $x$ to $a$ and $b$.
Show $(a, b) \cap \subset \neq 0$ is equivalent to show

$$
(x-\varepsilon, x+\varepsilon) \cap \sigma \neq \phi
$$

By assumption, there exists $\delta \in 6 \cap(0, \varepsilon) \neq \phi$

By forpirst lemma, $\quad \delta \mathbb{Z} \subset \sigma$.
By tobey's second lamina, there exists

$$
y \in \delta \mathbb{Z} \quad \text { s.t. } \quad|x-y|<\delta
$$

Finally, $\quad y \in 6$ (because $\delta \mathbb{L}<6$ ) because $\delta \in 6 \cap(0, \varepsilon)$ then $0<\delta<\varepsilon$. we have that

$$
|x-y|<\delta<\varepsilon .
$$

That is $y \in(x-\varepsilon, x+\varepsilon)$ but $y \in 6$ aswell, $\delta_{0}$ :

$$
y \in 6 \wedge(x-\varepsilon, x+\varepsilon) \neq \phi
$$

Exercise bo over the proof of the theorem again.

